On subsystem codes beating the quantum Hamming or Singleton bound

نویسندگان

  • PRADEEP KIRAN SARVEPALLI
  • P. K. Sarvepalli
چکیده

Subsystem codes are a generalization of noiseless subsystems, decoherence-free subspaces and stabilizer codes. We generalize the quantum Singleton bound to Fq-linear subsystem codes. It follows that no subsystem code over a prime field can beat the quantum Singleton bound. On the other hand, we show the remarkable fact that there exist impure subsystem codes beating the quantum Hamming bound. A number of open problems concern the comparison in the performance of stabilizer and subsystem codes. One of the open problems suggested by Poulin’s work asks whether a subsystem code can use fewer syndrome measurements than an optimal Fq-linear maximum distance separable stabilizer code while encoding the same number of qudits and having the same distance. We prove that linear subsystem codes cannot offer such an improvement under complete decoding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q ua nt - p h / 07 03 21 3 v 1 2 2 M ar 2 00 7 On Subsystem Codes Beating the Hamming or Singleton Bound

Subsystem codes are a generalization of noiseless subsystems, decoherence free subspaces, and quantum error-correcting codes. We prove a Singleton bound for Fqlinear subsystem codes. It follows that no subsystem code over a prime field can beat the Singleton bound. On the other hand, we show the remarkable fact that there exist impure subsystem codes beating the Hamming bound. A number of open ...

متن کامل

On Quantum Hamming Bound

It is desirable to study upper and lower bounds on the minimum distance and dimensions of quantum codes, so the computer search on the code parameter can be minimized and optimal codes can be known. It is a well-known fact that Singleton and Hamming bounds hold for classical codes [9]. We need some bounds on the achievable minimum distance of a quantum stabilizer code. Perhaps the simplest one ...

متن کامل

A Note on Quantum Hamming Bound

Quantum stabilizer codes are a known class of quantum codes that can protect quantum information against noise and decoherence. Stabilizer codes can be constructed from self-orthogonal or dualcontaining classical codes, see for example [3, 8, 11] and references therein. It is desirable to study upper and lower bounds on the minimum distance of classical and quantum codes, so the computer search...

متن کامل

Asymmetric and Symmetric Subsystem BCH Codes and Beyond

Recently, the theory of quantum error control codes has been extended to subsystem codes over symmetric and asymmetric quantum channels – qubit-flip and phase-shift errors may have equal or different probabilities. Previous work in constructing quantum error control codes has focused on code constructions for symmetric quantum channels. In this paper, we develop a theory and establish the conne...

متن کامل

Structures and Constructions of Subsystem Codes over Finite Fields

Quantum information processing is a rapidlymounting field that promises to accelerate the speed up ofcomputations. The field utilizes the novel fundamental rules ofquantum mechanics such as accelerations. Quantum states carry-ing quantum information are tempted to noise and decoherence,that’s why the field of quantum error control comes. In thispaper, we investigate vari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008